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Abstract
The problem of missing data is ubiquitous in domains such
as biomedical signal processing, network traffic analysis, bib-
liometrics, social network analysis, chemometrics, computer
vision, and communication networks—all domains in which
data collection is subject to occasional errors. Moreover,
these data sets can be quite large and have more than two
axes of variation, e.g., sender, receiver, time. Many applica-
tions in those domains aim to capture the underlying latent
structure of the data; in other words, they need to factor-
ize data sets with missing entries. If we cannot address the
problem of missing data, many important data sets will be
discarded or improperly analyzed. Therefore, we need a ro-
bust and scalable approach for factorizing multi-way arrays
(i.e., tensors) in the presence of missing data. We focus
on one of the most well-known tensor factorizations, CAN-
DECOMP/PARAFAC (CP), and formulate the CP model
as a weighted least squares problem that models only the
known entries. We develop an algorithm called CP-WOPT
(CP Weighted OPTimization) using a first-order optimiza-
tion approach to solve the weighted least squares problem.
Based on extensive numerical experiments, our algorithm is
shown to successfully factor tensors with noise and up to
70% missing data. Moreover, our approach is significantly
faster than the leading alternative and scales to larger prob-
lems. To show the real-world usefulness of CP-WOPT, we
illustrate its applicability on a novel EEG (electroencephalo-
gram) application where missing data is frequently encoun-
tered due to disconnections of electrodes.

Keywords- missing data, tensor factorization, CANDE-
COMP, PARAFAC, optimization

1 Introduction

Missing data can arise in a variety of settings due to loss
of information, errors in the data collection process, or
costly experiments. For instance, in biomedical signal
processing, missing data can be encountered during
EEG analysis, where multiple electrodes are used to
collect the electrical activity along the scalp. If one of
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the electrodes becomes loose or disconnected, the signal
is either lost or discarded due to contamination with
high amounts of mechanical noise. We also encounter
the missing data problem in other areas of data mining,
such as packet losses in network traffic analysis [30]
and occlusions in images in computer vision [8]. Many
real-world data with missing entries are ignored because
they are deemed unsuitable for analysis, but this work
contributes to the growing evidence that such data can
be analyzed.

Unlike most previous studies which have only con-
sidered matrices, we focus here on the problem of miss-
ing data in tensors because it has been shown increas-
ingly that data often have more than two modes of vari-
ation and are therefore best represented as multi-way
arrays (i.e., tensors) [3, 17]. For instance, in EEG data
each signal from an electrode can be represented as a
time-frequency matrix; thus, data from multiple chan-
nels is three-dimensional (temporal, spectral, and spa-
tial) and forms a three-way array [19]. Social network
data, network traffic data, and bibliometric data are of
interest to many applications such as community detec-
tion, link mining, and more; these data can have mul-
tiple dimensions/modalities, are often massively large,
and generally have at least some missing data. These
are just a few of the many data analysis applications
where one needs to deal with large multi-way arrays
with missing entries. Other examples of multi-way ar-
rays with missing entries from different disciplines have
also been studied in the literature [28, 23, 14]. For in-
stance, [28] shows that, in spectroscopy, intermittent
machine failures or different sampling frequencies may
result in tensors with missing fibers (i.e., a fiber is the
higher-order analogue of a matrix row or column, see
Figure 1). Similarly, missing fibers are encountered in
multidimensional NMR (Nuclear Magnetic Resonance)
analysis, where sparse sampling is used in order to re-
duce the experimental time [23].

Our goal is to capture the latent structure of
the data via a higher-order factorization, even in the
presence of missing data. Handling missing data in the
context of matrix factorizations, e.g., the widely-used
principal component analysis, has long been studied
[25, 13] (see [8] for a review). It is also closely related
to the matrix completion problem, where the goal is
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Figure 1: Tensor with missing row fibers (in gray).

to recover the missing entries [10, 9] (see §3 for more
discussion). Higher-order factorizations, i.e., tensor
factorizations, have emerged as an important method
for information analysis [3, 17]. Instead of flattening
(unfolding) multi-way arrays as matrices and using
matrix factorization techniques, tensor models preserve
multi-way nature of the data and extract the underlying
factors in each mode (dimension) of a higher-order
array.

We focus here on the CANDECOMP/PARAFAC
(CP) tensor decomposition [11, 15], which is a
commonly-used tensor model in various applications
[19, 18, 7, 1, 21]. Let X be a three-way tensor of size
I × J ×K, and assume its rank is R (see [17] for a de-
tailed discussion on tensor rank). With perfect data,
the CP decomposition is defined by factor matrices A,
B, and C of sizes I×R, J×R, and K×R, respectively,
such that

xijk =

R∑
r=1

airbjrckr,

for all i = 1, . . . , I, j = 1, . . . , J, and k = 1, . . . ,K.
In the presence of noise, the true X is not observ-

able and we cannot expect equality. Instead, the CP
decomposition should minimize the error function

(1.1) f(A,B,C) =

I∑
i=1

J∑
j=1

K∑
k=1

(
xijk −

R∑
r=1

airbjrckr

)2

.

An illustration of CP for third-order tensors is given in
Figure 2. The CP decomposition is extensible to N -way
tensors for N ≥ 3, and there are numerous methods for
computing it [2].

In the case of missing data, a standard practice is to
impute (i.e., fill in missing entries using various choices
of estimates such as the mean) the missing values in
some fashion and then apply a standard factorization
technique, perhaps using the factorization to re-impute
the missing values and repeating the procedure itera-
tively. Another technique, which we use here, is to use

Figure 2: Illustration of an R-component CP model for
a third-order tensor X.

a weighted version of the error function to ignore miss-
ing data and model only the known entries. Imputation
can be useful as long as the amount of missing data is
small but its performance degrades for large amounts
of missing data [25] (also see §5). Alternating methods,
which compute the factor matrices one at a time, com-
bined with iterative imputation can also be quite effec-
tive and often preferred since they are simple and fast.
Nevertheless, as the amount of missing data increases,
the performance of the algorithm may suffer since the
initialization and the intermediate models used to im-
pute the missing values will increase the risk of converg-
ing to a wrong solution [28]. Also, the poor convergence
of alternating methods due to vulnerability to flatlining
is noted in [8].

In this paper, in order to overcome the problems of
imputation and alternating methods, we use direct non-
linear optimization to solve the weighted least squares
problem for the CP model. The weighted version of
(1.1) is

(1.2) fW(A,B,C) =

I∑
i=1

J∑
j=1

K∑
k=1

{
wijk

(
xijk −

R∑
r=1

airbjrckr

)}2

,

where W, which is of the same size as X, is a nonnega-
tive weight tensor defined as

wijk =

{
1 if xijk is known,

0 if xijk is missing,

for all i = 1, . . . , I, j = 1, . . . , J, and k = 1, . . . ,K.
Our contributions in this paper are summarized as

follows:

• We develop a scalable algorithm called CP-WOPT
(CP Weighted OPTimization) for tensor factoriza-
tions in the presence of missing data. CP-WOPT
uses first-order optimization to solve the weighted
least squares objective function.

• Using extensive numerical experiments on simu-
lated data sets, we show that CP-WOPT can suc-
cessfully factor tensors with noise and up to 70%



missing data. Moreover, CP-WOPT is significantly
faster than the best published method in the liter-
ature [28].

• We demonstrate the applicability of the proposed
algorithm on a real data set in a novel EEG ap-
plication where data is incomplete due to failures
of particular electrodes. This is a common occu-
rance in practice, and our experiments show that
even if signals from almost half of the channels are
missing, underlying brain activities can still be cap-
tured using the CP-WOPT algorithm, illustrating
the usefulness of our proposed method.

The paper is organized as follows. We introduce
the notation in §2. In §3, we discuss related work in
matrix and tensor factorizations. The computation of
the function and gradient values for the general N -way
weighted version of the error function in (1.2) and the
presentation of the CP-WOPT method are given in §4.
Numerical results on both simulated and real data are
given in §5. Conclusions and future work are discussed
in §6.

2 Notation

Tensors of order N ≥ 3 are denoted by Euler script let-
ters (X,Y,Z), matrices are denoted by boldface capital
letters (A,B,C), vectors are denoted by boldface low-
ercase letters (a,b, c), and scalars are denoted by low-
ercase letters (a, b, c). Columns of a matrix are denoted
by boldface lower letters with a subscript (a1,a2,a3 are
first three columns of A). Entries of a matrix or a tensor
are denoted by lowercase letters with subscripts, i.e., the
(i1, i2, . . . , iN ) entry of an N -way tensor X is denoted
by xi1i2···iN .

An N -way tensor can be rearranged as a matrix;
this is called matricization, also known as unfolding
or flattening. The mode-n matricization of a tensor
X ∈ RI1×I2×···×IN is denoted by X(n) and arranges
the mode-n one-dimensional “fibers” to be the columns
of the resulting matrix. Specifically, tensor element
(i1, i2, . . . , iN ) maps to matrix element (in, j) where

j = 1 +

N∑
k=1
k 6=n

(ik − 1)Jk, with

Jk =


1, if k = 1 or if k = 2 and n = 1,
k−1∏
m=1
m6=n

Im, otherwise.

Given two tensors X and Y of equal size I1×I2×· · ·×IN ,
their Hadamard (elementwise) product is denoted by

X ∗ Y and defined as

(X ∗ Y)i1i2···iN = xi1i2···iN yi1i2···iN

for all 1 ≤ in ≤ IN .
The inner product of two same-sized tensors X,Y ∈

RI1×I2×···×IN is the sum of the products of their entries,
i.e.,

〈X,Y 〉 =

I1∑
i1=1

I2∑
i2=1

· · ·
IN∑

iN=1

xi1i2···iN yi1i2···iN .

For a tensor X of size I1 × I2 × · · · × IN , its norm is

‖X ‖ =

√√√√ I1∑
i1=1

I2∑
i2=1

· · ·
IN∑

iN=1

x2i1i2···iN .

For matrices (i.e., second-order tensors), ‖·‖ refers to the
analogous Frobenius norm, and for vectors (i.e., first-
order tensors), ‖ · ‖ refers to the analogous two-norm.

Given a sequence of matrices A(n) of size In × R
for n = 1, . . . , N , JA(1),A(2), . . . ,A(N)K defines an
I1 × I2 × · · · × IN tensor whose elements are given by(

JA(1),A(2), . . . ,A(N)K
)
i1i2···iN

=

R∑
r=1

N∏
n=1

a
(n)
inr
,

for all in ∈ {1, . . . , In} and n ∈ {1, . . . , N}.
For just two matrices, this reduces to familiar

expressions: JA,BK = ABT. Using the notation defined
here, (1.2) can be rewritten as

fW(A,B,C) = ‖W ∗ (X− JA,B,CK) ‖2 .

3 Related Work in Factorizations with Missing
Data

In this section, we first review the approaches for
handling missing data in matrix factorizations and then
discuss how these techniques have been extended to
tensor factorizations.

3.1 Matrix Factorizations Matrix factorization in
the presence of missing entries is a problem that has
been studied for several decades; see, e.g., [25, 13]. The
problem is typically formulated analogously to (1.2) as

(3.3) fW(A,B) =
∥∥∥W ∗

(
X−ABT

)∥∥∥2 .
A common procedure is to use an alternating approach,
that combines imputation and alternation and is also
known as expectation maximization (EM) [28, 26]. In
this approach, the missing values of X are imputed using
the current model, X̂ = ABT as follows:

X̄ = W ∗X + (1−W) ∗ X̂,



where 1 is the matrix of all ones. Once X̄ is generated,
the matrices A and/or B can then be updated according
to the error function ‖X̄ − ABT‖2. See [26, 16] for
further discussion in the missing data and general
weighted case.

Recently, a direct nonlinear optimization approach
was proposed for matrix factorization with missing
data [8]. In this case, (3.3) is solved directly using a
2nd-order damped Newton method. This new method
is compared to other standard techniques based on some
form of alternation and/or imputation as well as hybrid
techniques that combine both approaches. Overall,
the conclusion is that nonlinear optimization strategies
are key to successful matrix factorization. Moreover,
the authors observe that the alternating methods tend
to take much longer to converge to the solution even
though they make faster progress initially. This work
is theoretically the closest to what we propose—the
differences are that it focuses on matrices rather than
tensors and uses a second-order optimization method
rather than first-order (in fact, the paper mentions first-
order as future work).

A major difference between matrix and tensor fac-
torizations is worth noting here. In [26, 8], the lack
of uniqueness in matrix decompositions is discussed.
Given any invertible matrix G, JA,BK = JAG,BG−TK.
This means that there is an infinite family of equivalent
solutions. In [8], regularization is recommended as a
partial solution, but this can only control scaling and
not rotational freedom. In the case of the CP model,
there is often only one solution (excepting trivial in-
determinacies of scaling and column permutation) that
can be recovered exactly; see, e.g., [17] for further dis-
cussion on uniqueness of the CP decomposition.

Factorization of matrices with missing entries is also
closely related to the matrix completion problem. In
matrix completion, one tries to recover the missing ma-
trix entries using the low-rank structure of the matrix.
Recent work on this area [9, 10] shows that even if a
small amount of matrix entries are available and those
are corrupted with noise, it is still possible to recover the
missing entries up to noise. In [9], it is also discussed
how this problem relates to the field of compressive sens-
ing, which exploits structures of the data. Practically
speaking, the difference between completion and fac-
torization is how they measure success. Factorization
methods seek accuracy in the factors and this is the
measure used in §5. Completion methods, on the other
hand, seek accuracy in filling in the missing data. Ob-
viously, once a factorization has been computed, it can
be used to reconstruct the missing entries. In fact, most
completion methods use this procedure.

3.2 Tensor Factorizations The EM procedure dis-
cussed for matrices has also been widely employed for
tensor factorizations with missing data. If the current
model is JA,B,CK, then we fill in the missing entries of
X to produce a complete tensor according to

X̄ = W ∗X + (1−W) ∗ JA,B,CK,

where 1 is the tensor of all ones. The factor matrices
are then updated using alternating least squares (ALS)
as those that best fit X̄. See, e.g., [6, 29] for further
details.

Paatero [24] and Tomasi and Bro [28] have inves-
tigated direct nonlinear approaches based on Gauss-
Newton (GN). The code from [24] is not widely avail-
able; therefore, we focus on [28] and its INDAFAC (IN-
complete DAta paraFAC) procedure which specifically
uses the Levenberg-Marquardt version of GN for fitting
the CP model to data with missing entries. The primary
application in [28] is missing data in chemometrics ex-
periments. This approach is compared to EM-ALS with
the result being that INDAFAC and EM-ALS perform
almost equally well in general with the exception that
INDAFAC is more accurate for difficult problems, i.e.,
higher collinearity and systematically missing patterns
of data. In terms of computational efficiency, EM-ALS
is usually faster but becomes slower than INDAFAC as
the percentage of missing entries increases and also de-
pending on the missing entry patterns.

Both INDAFAC and CP-WOPT address the prob-
lem of fitting the CP model to incomplete data sets by
solving (1.2). The difference is that INDAFAC is based
on second-order optimization while CP-WOPT is first-
order with a goal of scaling to larger problem sizes.

4 CP-WOPT Algorithm

We consider the general N -way CP factorization prob-
lem for tensors with missing entries. Let X be a real-
valued tensor of size I1 × I2 × · · · × IN and assume its
rank is known to be R.1 Define a nonnegative weight
tensor W of the same size as X such that

(4.4) wi1i2···iN =

{
1 if xi1i2···iN is known,

0 if xi1i2···iN is missing,

for all in ∈ {1, . . . , In} and n ∈ {1, . . . , N}.
Our goal is to find matrices A(n) ∈ RIn×R for

n = 1, . . . , N that minimize the weighted objective

1In practice, the rank is generally not known and is not easily
determined. Understanding the performance of the methods
under consideration in that scenario is a topic of future work.

Results in [2] indicate that direct optimization methods have an
advantage when the rank is overestimated.



function (defined below in §4.1), i.e., we want to

solve minA(1),...,A(N) fW(A(1), . . . ,A(N)). This objective
function can be considered as a mapping from the cross
product of N two-dimensional vector spaces to R, i.e.,

fW : RI1×R ⊗ RI2×R ⊗ · · · ⊗ RIN×R 7→ R.

Although fW is written as a function of matrices, it can
be thought of as a vector function where the parameter
vector contains the vectorized and stacked matrices A(1)

through A(N), i.e.,

[
a
(1)T
1 · · · a

(1)T
R · · · a

(N)T
1 · · · a

(N)T
R

]T
.

In this view, fW : RP 7→ R, where P = R
∑N

n=1 In.
We derive the weighted objective function in §4.1 and
its gradient in §4.2. Once the gradient is known, any
gradient-based optimization method [22] can be used to
solve the optimization problem.

4.1 Function The N -way objective function is de-
fined by

(4.5) fW(A(1),A(2), . . . ,A(N))

=
∥∥∥W ∗ (X− JA(1), . . . ,A(N)K

)∥∥∥2
=

I1∑
i1=1

I2∑
i2=1

· · ·
IN∑

iN=1

w2
i1i2···iN

{
x2i1i2···iN

− 2xi1i2···iN

R∑
r=1

N∏
n=1

a
(n)
inr

+

(
R∑

r=1

N∏
n=1

a
(n)
inr

)2}
.

This does not need to be computed element-wise, but
rather can be computed efficiently using tensor oper-
ations. If we pre-compute Y = W ∗ X and Z =
W ∗ JA(1), . . . ,A(N)K, then

fW = ‖Y−Z ‖2 .(4.6)

Due to the well-known indeterminacies of the CP model,
it may also be desirable to add regularization to the
objective function as in [2], but this has not been
necessary thus far in our experiments.

4.2 Gradient We derive the gradient of (4.5) by
computing the partial derivatives of fW with respect

to each element of the factor matrices, i.e., a
(n)
inr

for all
in = 1, . . . , In, n = 1, . . . , N , and r = 1, . . . , R. The
partial derivatives of the objective function fW in (4.5)

% assume Y = W ∗ X is precomputed

Z = W ∗ JA(1), . . . ,A(N)K

% function computation

fW = ‖Y ‖2 − 2 〈 Y,Z 〉 + ‖Z ‖2

% gradient computation

FOR n = 1 TO N

G(n) = −2 Y(n)A
(−n) + 2 Z(n)A

(−n)

END

Figure 3: CP-WOPT computation of function value
(fW) and gradient (G(n) ≡ ∂fW

∂A(n) for n ∈ {1, . . . , N}).
It is possible to make this implementation more efficient
by computing G(n) = −2 (Y(n) − Z(n))A

(−n).

are given by

∂fW

∂a
(n)
inr

= 2

I1∑
i1=1

· · ·
In−1∑

in−1=1

In+1∑
in+1=1

· · ·
IN∑

iN=1

w2
i1i2···iN(

−xi1i2···iN +

R∑
l=1

N∏
m=1

a
(m)
iml

)
N∏

m=1
m6=n

a
(m)
imr

for all in = 1, . . . , In, n = 1, . . . , N , and r = 1, . . . , R.
Once again, the gradient does not need to be

computed element-wise. In matrix notation, we can
rewrite the gradient equation as

∂fW

∂A(n)
= 2

(
Z(n) −Y(n)

)
A(−n),(4.7)

where

A(−n) = A(N) � · · · �A(n+1) �A(n−1) � · · · �A(1)

for n = 1, . . . , N. The symbol � denotes the Khatri-Rao
product and is defined as follows for two matrices A and
B of sizes I×K and J×K (both have the same number
of columns):

A�B =
[
a1 ⊗ b1 a2 ⊗ b2 · · · aK ⊗ bK

]
where ⊗ denotes the vector Kronecker product.

The computations in (4.7) exploit the fact that
W is binary, see (4.4), such that W2 ∗ X =

W ∗ X = Y and W2 ∗ JA(1), . . . ,A(N)K = W ∗
JA(1), . . . ,A(N)K = Z. The primary computation in
(4.7) is called a “matricized tensor times Khatri-Rao
product” and can be computed efficiently [4]. The al-
gorithm is summarized in Figure 3.

Now that we have the gradient, we can use any first-
order optimization method such as nonlinear conjugate
gradient (NCG) and limited-memory BFGS [22].



5 Experiments

On both real and simulated three-way data, we assess
the performance of the CP-WOPT method in terms
of its ability to recover the underlying factors in the
presence of missing data. We demonstrate that even if
a significant percentage, e.g., 70%, of the tensor entries
are missing, the CP factor matrices can still be recovered
successfully. Furthermore, we compare our method in
terms of efficiency and scalability with the best known
method in the literature.

CP-WOPT is implemented using the Tensor Tool-
box [5], based on the gradient and function computa-
tions shown in Figure 3. For optimization, we imple-
mented the nonlinear conjugate gradient (NCG) method
with Hestenes-Stiefel updates [22], globalized via the
Moré-Thuente line search [20]. As mentioned in §3, a
Gauss-Newton approach has been evaluated previously
by Tomasi and Bro [28] and shown to be effective on
the missing data problem. We compare CP-WOPT
against their implementation of the Gauss-Newton ap-
proach called INDAFAC [27].

Both CP-WOPT and INDAFAC are iterative meth-
ods. Starting points are generated using the left singular
vectors of X(n) (X unfolded in mode n) with missing
entries replaced by zero. The stopping conditions are
set as follows. Both algorithms use the relative change
in the function value fW in (1.2) as a stopping condi-
tion (set to 10−6). In INDAFAC, the tolerance on the
infinity norm of the gradient is set to 10−8 and the max-
imum number of iterations is set to 103. These choices
are based on the values used in [28]. In CP-WOPT,
the tolerance on the two-norm of the gradient divided
by the number of entries in the gradient is set to 10−8,
the maximum number of iterations is set to 103, and
the maximum number of function evaluations is set to
104. All experiments were performed using Matlab 7.6
on a Linux Workstation (RedHat 5.2) with 2 Quad-Core
Intel Xeon 3.0GHz processors and 32GB RAM.

5.1 Simulated Data We randomly generate three-
way tensors with different ranks (R = 5, 10), different
sizes (50 × 50 × 50 and 150 × 150 × 150), and varying
percentages (10%, 40%, and 70%) and patterns of
missing entries (single entries and fibers, see Figure 1).
Factor matrices A, B and C of appropriate sizes are
generated randomly so that the collinearity of the
columns of the factor matrices in each mode is set to
a particular value, C. This means that

aT
r as

‖ar‖‖as‖
=

bT
r bs

‖br‖‖bs‖
=

cTr cs
‖cr‖‖cs‖

= C,

for all r 6= s and r, s = 1, . . . , R. We use C = 0.5 in all
our experiments as in [28]. The goal is to recover these

underlying factor matrices.
From each set of factor matrices, a third-order

tensor, T = JA,B,CK, is generated. Another tensor,
N ∈ RI×J×K , the same size as T with entries randomly
chosen from a standard normal distribution, is then used
to add noise to T as follows:

X = T + (100/η − 1)−1/2 ‖T‖
‖N‖

N,

where η% denotes the noise percentage. The value η = 2
is used in our experiments to be comparable with the
results in [28].

Finally, we set some entries of each generated tensor
to missing. We use two different patterns of missing
entries: randomly missing entries and randomly missing
fibers. We consider 10%, 40%, and 70% missing data.
In the case of randomly missing fibers, we ignore the
cases when a complete slice of a tensor turns out to be
missing because if we miss a whole slice of a tensor,
we cannot recover the CP factors. This is similar to the
problem of coherence in the matrix completion problem.
For instance, if we miss an entire row (or a column) of
a matrix, we can never recover its true factorization
because we do not have enough information.

We say that the factor matrices have been suc-
cessfully recovered if the following holds. Let Ā, B̄, C̄
be the recovered factor matrices. We require, for all
r ∈ {1, . . . , R}:

sim(r) =
|aT

r ār|
‖ar‖‖ār‖

× |bT
r b̄r|

‖br‖‖b̄r‖
× |cTr c̄r|
‖cr‖‖c̄r‖

(5.8)

> 0.97 ≈ (0.99)3.

The uniqueness of the CP model enables the direct
comparison of the recovered factor matrices with the
factor matrices used to generate the data. However, the
CP model has a permutation ambiguity, i.e., there is an
ambiguity in the column orderings, so we have to try all
possible permutations of the columns of Ā, B̄, C̄. The
accuracy of a method is defined as the percentage of
times it successfully recovers the factor matrices.

Table 1 reports the accuracy of CP-WOPT and
INDAFAC. Thirty sets of factor matrices were generated
for each value of R (R = 5, 10). Each entry in the table
is the percentage of correctly recovered set of factor
matrices out of the thirty corresponding CP models.
In the case of randomly missing entries, CP-WOPT can
perfectly recover the underlying factors with up to 70%
missing data. In the case of randomly missing fibers,
CP-WOPT only has trouble with the smaller tensor at
70% missing data. It is worth noting that the smaller
problems are more difficult for the following reason.
Suppose we have a tensor of size I×I×I with proportion



Table 1: Accuracy in terms of recovering the underlying factor matrices.

Accuracy for Randomly Missing Entries

Missing Data: 10% 40% 70%

INDAFAC CP-WOPT INDAFAC CP-WOPT INDAFAC CP-WOPT

Rank: R=5 R=10 R=5 R=10 R=5 R=10 R=5 R=10 R=5 R=10 R=5 R=10

50× 50× 50 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 83.3 96.7 100.0 100.0
150× 150× 150 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 93.3 100.0 100.0

Accuracy for Randomly Missing Fibers

Missing Data: 10% 40% 70%

INDAFAC CP-WOPT INDAFAC CP-WOPT INDAFAC CP-WOPT

Rank: R=5 R=10 R=5 R=10 R=5 R=10 R=5 R=10 R=5 R=10 R=5 R=10

50× 50× 50 100.0 100.0 100.0 100.0 93.3 100.0 100.0 100.0 26.7 6.7 86.7 76.7

150× 150× 150 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 83.3 80.0 100.0 100.0

M of missing data. Let D be defined as

D =
Number of known tensor entries

Number of variables
=

(1−M)I3

3RI
.

The difficulty of the problem is inversely proportional
to D, so that problem becomes easier as I increases as
long as M and R are constant. Figure 4 demonstrates
how accuracy changes with respect to D. For instance,
for M = 70% missing data (randomly missing fibers)
and R = 5, D is 50 for tensors of size 50 × 50 × 50
and accuracy of CP-WOPT is 86.7%; for tensors of size
150×150×150, on the other hand, D is 450 and accuracy
of CP-WOPT goes up to 100%. Overall, CP-WOPT
does as well or better than INDAFAC in all cases. We
point out, however, that we do not use the initialization
suggested in [28] in the results presented here.

The experiments show that the underlying factors
can be captured even if the CP model is fit to a tensor
with significant amount of missing data. This is because
the low-rank structure of the tensor is being exploited.
A rank-R tensor of size I × J × K has R(I + J + K)
degrees of freedom. The reason that the factors can
be recovered even with 70% missing data is that there
is still a lot more data than variables, i.e., the size of
the data is equal to 0.3IJK which is much greater than
the R(I + J + K) variables. Because it is a nonlinear
problem, we do not know exactly how many data entries
are needed in order to recover a CP model of a low-rank
tensor. However, the lower bound for the number of
entries needed to recover a low-rank matrix has been
derived in [10].

Figure 5 and Figure 6 show average computation
times for varying levels of missing values M , i.e.,
M = 10%, 40%, 70%, rank R, i.e., R = 5, 10 and
data set sizes, i.e., 50 × 50 × 50 and 150 × 150 × 150.
For each value of R and data set size, 30 sets of
factor matrices were generated. Each bar in Figure 5

Figure 4: Accuracy versus D, i.e., the ratio of the
number of known tensor entries to the number of
variables, for INDAFAC and CP-WOPT algorithms for
tensors of size 50 × 50 × 50 and 150 × 150 × 150. The
plots are for the randomly missing fiber case in Table 1.



Figure 5: Randomly Missing Entries: Average compu-
tation time of INDAFAC (blue) and CP-WOPT (red)
for varying levels of missing values, ranks and data set
sizes.

and Figure 6 demonstrates the average computation
times of the CP models, which successfully recover the
underlying factor matrices out of those 30 CP models.
In all but two cases, the mean computation times
for CP-WOPT were significantly lower than those for
INDAFAC using a two-sample t-test at a 95% confidence
level. For the two cases where no significant difference
in mean computation time was observed (70% missing
data for size 50 × 50 × 50 tensors using ranks R =
5, 10), the results may be biased by too few samples
resulting in two few degrees of freedom (df) in the tests.
For those cases, INDAFAC successfully recovered the
factors in only 8 of 30 (p-value=0.2117, df=10.04, 95%
CI=[−0.35,∞) ) and 2 of 30 (p-value=0.2127, df=1.03,
95% CI=[−15.7,∞) ) models, respectively. See Table 4
and Table 5 in Appendix A for the detailed timing
information, including results from the t-tests.

As R increases, we also see that the increasing
computational cost of INDAFAC grows faster than
that of CP-WOPT. That is mainly because for an
Nth-order tensor X of size I1 × I2 × · · · × IN , the
cost per function/gradient evaluation for CP-WOPT is

O(NQR), where Q =
∏N

n=1 In while each iteration of

INDAFAC costs O(P 3), where P = R
∑N

n=1 In. Note
that INDAFAC gets faster as the amount of missing
data increases and data gets sparse. On the other
hand, CP-WOPT implementation does not yet exploit
the data sparsity; therefore, it does not behave in the
same way. We plan to address this issue in near future
by extending our implementation to sparse data sets.

Figure 6: Randomly Missing Fibers: Average compu-
tation time of INDAFAC (blue) and CP-WOPT (red)
for varying levels of missing values, ranks and data set
sizes.

We also test whether CP-WOPT scales even to
larger data sets and observe that it recovers the underly-
ing factor matrices for a data set of size 500×500×500
(with M = 10%, 40%, 70% randomly missing entries)
successfully in approximately 80 minutes on average for
R = 5. On the other hand, INDAFAC cannot be used to
fit the CP model to data sets of that size due to memory
problems.

5.2 EEG Data In this section, we use CP to model
an EEG data set in order to observe the gamma ac-
tivation during proprioceptive stimuli of left and right
hand. The data set contains multi-channel signals (64
channels) recorded from 14 subjects during stimulation
of left and right hand (i.e., 28 measurements in total).
For each measurement, the signal from each channel is
represented in both time and frequency domains using
continuous wavelet transform and vectorized (forming
a vector of length 4392); in other words, each measure-
ment can be represented by a channel by time-frequency
matrix. The data for all measurements can then be
arranged as a channels by time-frequency by measure-
ments tensor of size 64 × 4392 × 28. For details about
the data, see [21].

We model the data using a CP model with R = 3,
denoting A, B and C as the extracted factor matri-
ces corresponding to the channels, time-frequency and
measurements modes, respectively. We demonstrate the
columns of the factor matrices in each mode in Fig-
ure 7-A. The 3-D head plots correspond to the columns



of A, i.e., coefficients corresponding to the channels
ranging from low values in blue to high values in red.
The time-frequency domain representations correspond
to the columns of B rearranged as a matrix and again
ranging from low values in blue to high values in red.
The bar plots represent the columns of C. Note that
3 rows of images in Figure 7-A (3-D head plot, ma-
trix plot, bar plot) correspond to columns r = 1, 2, 3
of the factor matrices (A, B, C), respectively. Observe
that the first row of images highlights the differences be-
tween left and right hand stimulation while the second
and third rows of images pertain to frontal and pari-
etal activations that are shared by the stimuli. Unlike
[21], we do not use nonnegativity constraints and upon
converting the data from complex to real by the abso-
lute value, we center the data across the channels mode
before the analysis.

It is not uncommon in EEG analysis that the signals
from some channels are ignored due to malfunctioning
of the electrodes. This will create missing fibers in a
tensor when we arrange the data as described above (as
in Figure 1). To reflect such cases of missing data, we
randomly set data for one or more of the 64 channels
for each measurement to be missing, center the tensor
across the channels mode ignoring the missing entries
and then fit a CP model with R = 3 to the resulting
data using the CP-WOPT algorithm. Let Ā, B̄, C̄ be
the factor matrices extracted from a tensor with missing
entries using the CP-WOPT algorithm. Table 2 illus-
trates how the number of missing channels per measure-
ment affects the similarity between the columns of fac-
tor matrices extracted from missing data, i.e., Ā, B̄, C̄,
and the columns of factor matrices extracted from the
original data with no missing entries, i.e., A,B,C. The
similarity is defined in terms of the measure given in
(5.8). For each number of missing channels, we generate
50 tensors with randomly missing channels and extract
the corresponding 50 sets of Ā, B̄ and C̄. The values
given in Table 2 are the average similarities between
A,B,C and those 50 sets of Ā, B̄ and C̄. We observe
that as the number of missing channels increases, the
similarities decrease as expected. However, even up to
30 missing channels per measurement, or about 47% of
the data, the extracted factor matrices match with the
original factor matrices extremely well, with similarity
measures still above 0.90. Furthermore, Figure 7(b),
images for Ā, B̄ and C̄ analogous to those for A,B,C
in Figure 7(a), illustrates that the underlying brain dy-
namics are still captured even when 30 channels per
measurement are missing. Note that only slight local
distortions can be observed with respect to the corre-
sponding images for the original factor matrices in Fig-
ure 7(a).

It can be argued that the activations of the elec-
trodes are highly correlated and even if some of the
electrodes are removed, the underlying brain dynam-
ics can still be captured. However, in these experiments
we do not set the same channels to missing for each
measurement; the channels are randomly missing from
each measurement. On the other hand, CP decomposi-
tions may not be able to recover factors as well for data
with certain patterns of missing values, e.g., missing the
signals from the same side of the brain for all measure-
ments. However, it is not very likely to have such data.
We still note that the success of the proposed approach
depends on the patterns of missing entries, which is the
case for any factorization approach proposed for han-
dling missing data.

Finally, it may also look reasonable to impute miss-
ing entries simply with the mean rather than ignoring
them. However, this is not a valid approach especially as
the percentage of missing entries increases [25], which
we also observe in Table 3. Let Â, B̂, Ĉ be the fac-
tor matrices extracted from data with missing entries
when missing entries are replaced by the mean across
the channel mode. Since the data is centered across
the channels mode, missing entries are replaced with

Table 2: CP-WOPT EEG Results: The similarity
between the columns of Ā, B̄, C̄ and A,B,C when
missing entries are ignored and only the known entries
are modeled. The similarity measure is defined in (5.8).

Missing sim(r = 1) sim(r = 2) sim(r = 3)
Channels

1 0.9989 0.9995 0.9991

10 0.9869 0.9936 0.9894

20 0.9560 0.9826 0.9697

30 0.9046 0.9604 0.9312

40 0.6192 0.8673 0.7546

Table 3: Imputation EEG Results: The similarity
between the columns of Â, B̂, Ĉ and A,B,C when
missing entries are replaced with the mean across the
channel mode. The similarity measure is defined in
(5.8).

Missing sim(r = 1) sim(r = 2) sim(r = 3)

Channels

1 0.9970 0.9984 0.9982

10 0.9481 0.9729 0.9752

20 0.9002 0.9475 0.9371

30 0.6435 0.8719 0.8100

40 0.3045 0.7126 0.5699



(a) No missing entries (b) 30 channels missing per measurement

Figure 7: Columns of the CP factor matrices (A, B and C with R = 3) extracted from the EEG data arranged as
a channels by time-frequency by measurements tensor with. The 3-D head images were drawn using EEGLab [12].

zeros. Table 3 shows how the similarities (again de-
fined in terms of (5.8)) between the columns of Â, B̂, Ĉ
and the columns of the factor matrices extracted from
the original data with no missing entries, i.e., A,B,C,
change as the amount of missing data increases. The
same data sets used in Table 2 are again used here for
comparison. We can see that when there is large amount
of missing data, the structure in the original data can be
captured better by ignoring the missing entries rather
than replacing them with the means.

6 Conclusions

The closely related problems of matrix factorizations
with missing data and matrix completion have recently
been receiving a lot of attention. In this paper, we
consider the more general problem of tensor factoriza-
tion in the presence of missing data, formulating the
canonical tensor decomposition for incomplete tensors
as a weighted least squares problem. Unlike imputation-
based techniques, this formulation ignores the missing
entries and models only the known data entries. We
develop a scalable algorithm called CP-WOPT using
gradient-based optimization to solve the weighted least
squares formulation of the CP problem.

Our numerical studies suggest that the proposed
CP-WOPT approach is accurate and scalable. CP-
WOPT recovered the underlying factors successfully
even with 70% missing data and scaled to large dense
tensors with more than 100 million entries, i.e., 500 ×
500×500. Moreover, CP-WOPT is faster than the best
alternative approach which is based on second-order
optimization. Most importantly, we have demonstrated

that the factors extracted by the CP-WOPT algorithm
can capture brain dynamics in EEG analysis even if
signals from some channels are missing, suggesting that
practitioners can now make better use of incomplete
data in their analyses.

In future studies, we plan to extend our results in
several directions. Because it is naturally amenable to
this, we will extend our method to large-scale sparse
tensors in the case where the amount of missing data is
either very large or very small (i.e., W or 1−W should
also be sparse). We will also include constraints such
as non-negativity and penalties to encourage sparsity,
which enable us to find more meaningful latent factors
from large-scale sparse data. Finally, we will consider
the problem of collective factorizations with missing
data, where we are jointly factoring multiple tensors
with shared factors.

A Detailed numerical results

In this section, we present the detailed timing results
corresponding to the plots in Figure 5 and Figure 6.
Table 4 and Table 5 contain the average computa-
tion times (± sample standard deviations) for runs us-
ing INDAFAC and CP-WOPT. For each comparison of
INDAFAC and CP-WOPT (i.e., each cell of the tables),
30 runs were performed. All statistics reported in the
tables—averages, sample standard deviations, p-values,
and degrees of freedom(df)—were computed using only
those runs in which the factors were successfully recov-
ered. Two-sample t tests using 95% confidence levels
were performed for each comparison, where the null hy-
pothesis tested was that the mean computation time



for runs using INDAFAC was greater than the mean
time using CP-WOPT. The t statistics were computed
assuming unequal variances for the INDAFAC and CP-
WOPT runs (as confirmed by F tests on the sample
standard deviations), and thus the effective degrees of
freedom (df) reported in the tables are those computed
using the standard Satterthwaite approximation.
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Table 4: Randomly Missing Entries: Average computation time (± standard deviation) to fit an R-component
CP model to a tensor with randomly missing entries. The p-values and effective degrees of freedom (df) are those
computed for the two-sample t-tests using 95% confidence levels.

Time for Randomly Missing Entries (sec)

Rank: R = 5

Missing Data : 10% 40% 70%

INDAFAC CP-WOPT INDAFAC CP-WOPT INDAFAC CP-WOPT

50× 50× 50 5.9± 1.5 2.9± 0.6 4.5± 0.4 2.9± 0.6 4.6± 0.9 3.7± 0.6

p-value: 0.0000, df: 37.45 p-value: 0.0000, df: 55.14 p-value: 0.0000, df: 42.23

150× 150× 150 285.7± 30.8 89.4± 16.1 225.7± 27.0 93.0± 17.9 203.0± 63.6 118.8± 21.7
p-value: 0.0000, df: 43.79 p-value: 0.0000, df: 50.34 p-value: 0.0000, df: 35.66

Rank: R = 10

Missing Data : 10% 40% 70% 10% 40% 70%

INDAFAC CP-WOPT INDAFAC CP-WOPT INDAFAC CP-WOPT

50× 50× 50 21.4± 3.2 7.7± 0.9 18.0± 2.9 8.7± 1.7 13.3± 2.3 9.1± 1.5

p-value: 0.0000, df: 33.51 p-value: 0.0000, df: 46.48 p-value: 0.0000, df: 46.84

150× 150× 150 1020.5± 168.4 233.3± 43.1 765.4± 95.9 245.8± 35.5 643.6± 134.0 291.6± 47.0
p-value: 0.0000, df: 32.79 p-value: 0.0000, df: 36.82 p-value: 0.0000, df: 33.14

Table 5: Randomly Missing Fibers: Average computation time (± standard deviation) to fit an R-component
CP model to a tensor with randomly missing fibers. The p-values and effective degrees of freedom (df) are those
computed for the two-sample t-tests using 95% confidence levels.

Time for Randomly Missing Fibers (sec)

Rank: R = 5

Missing Data : 10% 40% 70%

INDAFAC CP-WOPT INDAFAC CP-WOPT INDAFAC CP-WOPT

50× 50× 50 4.8± 0.6 2.2± 0.4 4.4± 0.7 2.7± 0.5 4.0± 0.9 3.7± 0.8
p-value: 0.0000, df: 47.74 p-value: 0.0000, df: 49.03 p-value: 0.2117, df: 10.04

150× 150× 150 275.7± 34.2 84.0± 26.9 209.5± 18.0 80.2± 13.4 167.8± 20.2 105.2± 29.0

p-value: 0.0000, df: 54.99 p-value: 0.0000, df: 53.69 p-value: 0.0000, df: 51.52

Rank: R = 10

Missing Data : 10% 40% 70%

INDAFAC CP-WOPT INDAFAC CP-WOPT INDAFAC CP-WOPT

50× 50× 50 19.6± 3.8 6.0± 1.9 15.2± 1.7 6.8± 1.0 13.3± 4.6 9.2± 1.8
p-value: 0.0000, df: 42.01 p-value: 0.0000, df: 45.76 p-value: 0.2127, df: 1.03

150× 150× 150 989.4± 160.5 201.2± 40.3 733.6± 87.6 241.1± 26.7 496.3± 47.2 234.6± 38.8

p-value: 0.0000, df: 32.64 p-value: 0.0000, df: 34.35 p-value: 0.0000, df: 44.29
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